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Mechanical systems including friction effects constitute a theoretically interesting and practically im-
portant class of nonlinear systems. Such systems are commonly described by a second-order nonlinear
differential equation with a noncontinuous vector field. Under forcing conditions, a mechanical system
with friction can display very complicated behavior, including noninvertible erratic trajectories. In ap-
plications, an objective is to induce a prescribed motion in spite of uncertainties (friction effects) and
complicated uncontrolled behavior. This objective is attained by means of a control strategy that gen-
erates an estimate of the friction forces and counteracts them.

PACS number(s): 05.45.+b

We consider in this work the model of a mechanical
system with friction [1]

m d?x /dt*+ Fx,dx /dt)+ax =71/(t)+1, , (1)

where m is the mass of the system, 7,(¢) is an unknown
(regular or stochastic) external force, which may be due
to loads and/or noise acting in the mechanism, and 7, is a
manipulated force used to control the system. The term
F(x,dx /dt) includes all friction effects.

Inaccuracies in the control of mechanical systems are
often caused by the presence of friction. Typical errors
caused by friction are steady-state errors and tracking
lags in position trajectories. Steady-state errors are main-
ly caused by static (or dry) friction, which is proportional
to the velocity direction. Tracking lag errors are generat-
ed by viscous friction. To deal with friction, it is neces-
sary to have a good characterization of the structure of
the friction model and then to design appropriate com-
pensation techniques [1]. The impact of friction on the
performance of precision control systems has received
some attention: a number of works have recently ap-
peared discussing modeling and compensation of friction
[1-4]. Among the proposed concepts for dealing with
friction is to estimate its force and generate a control to
counteract it [1-3].

A lot of effort has been devoted to the modeling of fric-
tion. It is well established that friction depends on the
direction of the movement. Phenomena such as sticking
(torque needed to start the motion), as well as downward
bends at low velocities have been identified [4]. Detailed
experiments [4] performed at low velocities have
confirmed Tustin’s model which includes a decaying ex-
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ponential term. In general, it can be said that friction is a
complicated phenomenon representing all the forces op-
posing the motion. Such forces can be both orthogonal
and tangential to the direction of motion.

A control strategy to compensate for the presence of
friction in the system (1) is proposed in this work. Our
contribution in the problem of control is to show that the
friction forces can be estimated on line via measurements
of position (and velocity) of the mechanical system. The
performance of the controller is tested numerically with
an oscillator displaying complicated dynamical behavior.

Friction models have been extensively studied [1,2,4].
It is well established that friction forces are functions of
the velocity. Although there is disagreement on the char-
acter of the functionally of the friction forces with the ve-
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locity, experiments have confirmed that, for moderated
and low velocities, the main components in the friction
forces are caused by the following phenomena [4] (see
Fig. 1).

(a) Coulomb friction and stiction. Coulomb friction is
due to sticking effects. There is a constant friction torque
opposing the motion when the velocity is not zero. For
zero velocity, stiction opposes all motions as long as the
forces are smaller in magnitude than the stiction force.

(b) Stribeck friction (downward bends). After the stic-
tion force has been surmounted, the friction force de-
creases exponentially, reaching a minimum, and then in-
creases proportionally with the velocity. These bends
occur at velocities close to zero. The friction forces are
due to partial fluid lubrication, where the velocity is ade-
quate to entrain some fluid into the junction but not
enough to fully separate the surfaces.

(c) Viscous friction. These forces appear at nonzero ve-
locity due to energy dissipation in the lubricant fluid con-
tained between the moving surfaces.

(d) Asymmetries and position dependence. Imperfec-
tions and imbalances in the mechanism induce asym-
metries and position dependence of the friction forces.
However, experiments on industrial mechanisms have
shown that this dependence is relatively weak [1,4].

The following expressions are generally used to model
the friction effects (a)—(c):

F.(x)=pB;sgn(x) , (2a)
F,(%)=PBe **lsgn(x) , (2b)
F,(x)=pBx , (2¢)
where B; represents the Coulomb friction, and u

represents the slip constant in the Stribeck friction. The
friction forces can be written as follows:

F(x, % )=¢(x)[F,(x)+F(x)+F,(x)] . (3)

The function ¢(x) is introduced to represent asymmetries
and position dependencies of the friction forces or a nor-
mal load that may change with displacement. Model (3)
can be used for simulating (at least for moderated veloci-
ties) real friction effects.

A feature of model (3) is that, because of the function
sgn(x), it is noncontinuous at x =0. A consequence of
the discontinuity in the term sgn(x) is the stick-slip
motion [4]. When the trajectory passes through the set
3 ={x =0}, the static friction may balance the external
forces 7(t)+7,. In this situation, the system remains
stuck at zero velocity until the driven forces reach the
value of the Coulomb friction ;.

Geometrically, sticking behavior is present when there
are some regions in the phase portrait where the flow
generated by Eq. (3) is directed from positive velocities
(X >0) toward the set =={x =0}, and simultaneously
the flow is directed from negative velocities (X <0) to-
ward 2, producing a conflict in the flow directions.
These regions of conflict are the sticking regions R CX.
Formally, it is possible to define an equivalent vector field
on R which is (n —2)-dimensional (zero velocity and con-
sequently, constant position) if the original vector field is
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n-dimensional. From a control viewpoint, this
phenomenon is responsible for the existence of steady-
state offsets in position. As a consequence of the reduc-
tion of the dimensionality of the flow generated by (3),
the dynamical behavior of the system is irreversible (i.e.,
it is not possible to reconstruct the past of the trajectory
by inverting time [in other words, the phase portrait of
(3) is not invariant under the transformation t— —t]).
The second consequence of the discontinuity of the vec-
tor field in (3) is that embedding of an observable variable
is not globally diffeomorphic to the phase flow, so that
control of the system (3) cannot be attained via delay
coordinate techniques [5].

To show that system (3) can display complicated
behaviors, let us consider the parameters S,=1.0,

B,=pB;=0, the functionality
1+kx for x>—1/k
$X)=10 for x<—1/k )

and the external forces 7,(¢)= 4 sin(Q¢) and 7,=0. This
case was considered in [6] to study the dynamical effects
of oscillations in mechanical systems with dry friction.
The function ¢(x) represents a normal load which varies
with the position. Note that ¢(x) is continuous, such
that the only source of discontinuities is the term sgn(x ).
Figure 2 shows the (x,x) portrait for the case Q=1.25,
A=1.9, and k =1.5. One can think of Fig. 1 as being
the phase portrait of the system d2x/dt?
+H(x,dx /dt)+ax =0 perturbed by an external signal
7,(¢). In the unforced phase portrait, two regions R and
S in the set = (with R US =X) are distinguished. In the
set S ={x=0,x <y*} for certain y* <0, the direction of
both vectors agrees, such that the function sgn(x)
switches only one time. On the other hand, the sticking
phenomenon appears in the set R ={x =0,x >y*]
where the flow of the system is in conflict. The segment
of line R \ {0} is a set of weak equilibrium points because
a small perturbation in the vector field slides the trajec-
tories toward the strong equilibrium point (0,0). When
the flow of the system is perturbed with a harmonic force
71(2)= A sin(Q1), almost all the points of the set S remain
as switching points. This invariance is due to the
transversality of the trajectories of (3) in S. On the other

X1

FIG. 2. Phase portrait of the system (3) under the functional-
ity (4) and an external force 7,(7)= A4 sin(Qt).
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hand, the set R induces a band B of sliding flow (small ve-
locity dynamics with alternating stiction periods), where
the trajectories move to regions with a lower normal load
#(x). The trajectory leaves the sliding band B in a region
where the force 7(¢) becomes larger than the Coulomb
friction and returns again to the sliding band B.

Complicated behaviors, such as the one discussed
above, are undesirable in most cases because degradation
of mechanical parts may appear. Thus, control actions
are necessary in order to induce more regular behaviors
despite friction and external forces.

The objective of control is to regulate the behavior of
system (1). Such an objective is attained by applying a
force to compensate for the external 7,(¢) and friction
forces F(x,x). In this way, the system can be controlled
to generate a prescribed behavior.

Assume the following.

(i) Position x (and, if possible, velocity X ) is available
for measurement.

(ii) The parameter a@ and the mass m are exactly
known. The friction forces F(x,x ) are not known.

(iii) 7,(2) is bounded for all # 2 0.

Some comments regarding the assumptions are in or-
der. Assumption (i) is physically realizable through shaft
encoder measurements. Except for robots, the mass m is
constant in most mechanical systems, so that it can be ac-
curately known. On the other hand, a can be interpreted
as a string constant, which is well known in most cases.
That friction effects F(x,x ) are not well known is a realis-
tic situation for practical applications.

Without lost of generality, assume that m =1. Write
system (1) as a set of first-order equations:

X1=X, ,
&)
X, =—ax; —Hx,x,)+r(0)+7, .

Let y (t)EC? be a prescribed position trajectory. If the
friction forces are known, the following control feedback:

hix, )= —7(t)+ax, +F(x,x,)+v ,

(6)
v=d?% /dt*+g,(x,—dy/dt)+g,(x;—y),

steers asymptotically the system trajectories to a behavior
with x,(¢z)=y(¢). The control parameters g;,g, are
chosen in such a way that the matrix

0 1

M=
—82 T8

be stable. The control feedback (6) will be called “ideal
control feedback” because it assumes perfect knowledge
of friction forces. The main advantage of using (6) is that
the controlled dynamics are linear. When the friction
forces #(x,,x,) are not known, an alternative is to use an
approximation of the control (6) to obtain a controlled
behavior as close as possible to a linear one.

Let o(¢)=—F[x,(2),x,(¢)]+7(¢). Then, system (5)
can be written as

X,1=x, , (7a)

X, =—ax,+y(t)+7, . (7b)
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In principle, the term 3(¢) can be calculated via the ac-
celeration a (t)=d*x /dt* Eq. (7b):

P()=a(t)+ax,—, . (8)

That is, the friction plus exogenous forces can be estimat-
ed via a balance of forces. To synthesize a controller
with an estimation like (8), we have to use approxima-
tions for the acceleration a(f). Let A>0 and consider
the control law in the time interval tE€[#;,t;,,),
Lev1 L =A:

(x,8)=—1, +ax,+v ,

9)
v=d? /dt*+g,(x,—dy/dt)+g,(x,—y),

'Zkzak ‘ax,  —Tyk (10)

where x, is the measured or estimated velocity,
a, =a(t;) is the acceleration of the system at ¢t =¢;, and
Ty x =To(t; ) is the force applied to control the mechanical
system. Note that as A—0, the estimate (10) converges
to Y(¢) in (8). If ¢, —, then 7, ,—7, and from (9) and
(10)

Tlx()]=a(t)+r(t)+v ,

from where a (¢)=v. Consequently, in the limit as A—0
the behavior under control (9),(10) converges to the
behavior under the ideal control feedback (6). Control (9)
can be interpreted as a A perturbation of the ideal control
feedback (6). Evidently, the case A=0 cannot be imple-
mented because in the limit A—0 control (9),(10) is not
well defined.

The estimation procedure (10) has a nice interpreta-
tion. The combination of (9) and (10) yields

Ve=a,—v, i, .

On the other hand, (7) and (9) lead to the following dy-
namics:

ap=v .t —U), tE[H_11),
so therefore
U, =+, _1)/2=0.5¢, _,—0.5¢, . (11)

From (11), one can see that the estimate 9, is the arith-
metic average of the actual friction forces ¢, and the last
estimate ¥, _;. As A—0, ¥, _,—¥, and ¥y—1p. Thus,
in the limit A—O the estimate 1/ converges to the actual
term ¥. On the other hand, Eq. (11) can be interpreted as
a contraction mapping, with a decaying rate equal to 0.5.
If the friction forces ¥ are bounded, the estimator (10)
yields bounded estimates ¥,. Therefore, if the friction
forces are bounded, the estimation procedure (10) is
stable. Under the control (9) the system becomes

z=Mz +n(t),

where z,=x,—y, z,=x,—dy/dt, and 7(¢)=[0,9—].
It is not hard to show that the asymptotic error
||z(z—o0)|| is proportional to the error estimation
|$p—1)|. Consequently, the better the estimation ¥, the
lower the control error ||z|].
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FIG. 3. Dynamics of the controlled system (3) under the
feedback control (9),(10).

To test the performance of control (9),(10), system (3)
with normal load (4) and 7(¢#)= 4 sin(Q¢) (the oscillator
displaying the behavior in Fig. 1) will be used. Assume
that the position x,; and the velocity x, are available for
measurement at sampling rates A. To implement estima-
tion (10), the acceleration a; is approximated as a finite
difference: a;=(x,; —Xx,x_;)/A, such that an error
O(A) in the approximation of the acceleration is intro-
duced. We take A=0.01, which implies that the mea-
surements are made at frequencies of 100 Hz. Assume
that the desired position trajectory is y(¢)=B sin(Q¢).
Figure 3 shows the convergence of the controlled system
to the position trajectory y(¢). The values g, =2 and
g,=1 have been set such that matrix M has eigenvalues
{—1,—1}. Figure 4 shows the estimated friction forces
¥, and the applied control force 7,. Note that the ap-
plied force 7, counteracts the friction forces ¢ (i.e.,
T,==1)) after a transient behavior.
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FIG. 4. Estimated friction forces ¥, and applied control
force 7, derived from the controlled system (3),(9),(10).

Suppose now that only the position x, is available for
measurements. In this case we use stable finite
differences to  estimate acceleration:  a;=(x,,
—2xy -1 +%; ,—,)/A% In addition, the velocity is es-
timated via x,; =(x;  —x;;_;)/A. Also for A=0.01,
the behavior under these conditions is analogous to the
one shown in Fig. 3.

In summary, a strategy for controlling systems with
friction was studied. In most precision mechanical sys-
tems, such as telescopes, friction is an important effect
that must be considered in order to obtain smooth sliding
between mechanical parts. To compensate for friction
forces, the control strategy makes use of friction force es-
timates derived from a balance of forces. The perfor-
mance of the controller was tested numerically in a sys-
tem with variable normal load showing good dynamical
performance.
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